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According lo dcfinilion (2) off(:). 

l f (:) d: 
C, 

p " 2n 
< --2Jr{J =--pl· II 

I - t> I - t> 

and 

R " 2n R 
--- 2n R = ---
R - I R - I 

Since 0 < a < I. lhc values of lhcsc lwo integrals evidently lend lo 0 as p and R 
lend lo 0 and oo. rcspcclivcly. Hence. if \\IC lcl p lend lo 0 and then R tend lo oo in 
equation (4), v,:c arrive al the rcsull 

or 

(I - e i 2u:r) /~ ~dr = 2nie 
Jo r + I 

; <l:T 

?' _[ 

1
~ ,. lJ e ia:r ('io:r 

--dr = 2ni .1 • -.- = n-----
r +· J I - e· 1.:.Ll:T e"':T l,ia:r - e io:T 

Using lhc variable of inlcgralion x here. inslcad of r. as well as the expression 

,,,.c arrive al lhcdcsircd rcsuh: 

eiu:r - e ·iu:r 

SIJlllJr = -----
?' _[ 

(5) rx; ~dx = Jr 

Jo x + I sm an 
(0 < a < I ). 

EXERCISES 

1. Cse the function fC:.) = (eia.· - eil•.~ )/:: 2 and the indented contour in Fig. 108 (Sec. 89) 
to derive the integration formula 

l '- COS(CIX) - cos(b.r) ;r 
----,---d.\ = -(/J- Cl) 

• (I x- 2 
(a :::. 0. b :::. 0 ). 

Then. with the aid of the lrigonomctric identity I - cos( 2.r) = 2 sin2 x. point out how it 
fol lows that 

l '- sin 2 x . _ ;r 
, d.\ - . 

'(I .r- 2 

2. Derive the integralion formula 

{x dx 
.f o -./\--.,-. (.-,. 2_+_1_) 

hy integrating the function 

- -I;':! t,1-1.: 2.111,~:. 

/"(::) = -·,-- = ---
. :- + I : 2 + I ( ;r 3;r) 

I: I > O. -
2 

< arg :: < T 

over the indented contour appearing in Fig. I09 (Sec. 90). 
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3. Derive the integration formula obtained in Exercise 2 by integrating the branch 

--1.:2 t-'1-1.:2110.~.'. 

(<::.) = -~-- = ---
. ::.2 + I ::.2 + I 

(I::. I > 0. 0 < arg::. < 2.,T) 

of the multiple-valued function ::.- 1: .. !)<::. 2 + I) over the closed contour in I-lg. 110 
(Sec. 91 ). 

4. Derive the integration formula 

[.
"'- JX 2.,T 
------dx= 

. 0 (x +a)(.\·+ b) J3 
;/ii - J/; 

a - b 
((I > I> > 0) 

using the function 

- I;.\ t'1l(\1lo;:; 
/'(::) = __ ._· -
. (:+a)(::+/J) (::. +ti)(::.+ b) 

(1::.1>0.0 < arg: < 2;r) 

and a closed contour similar to the one in hg. 110 (Sec. 91 ). but where 

p < b <ii < R. 

5. The beta ft111clio11 is this function of two real variables: 

s < p. ,, ) = r I , ,, - I ( i - n ,, - I "' 
.fo (p > 0. q > 0) . 

.\fake the substitution 1 = I/(.\·+ I) and use the resulc obtained in the example in Sec. 91 
to show thac 

;r 
8(p. I - pl=-.--

sm (p;r) 
(O<p<I). 

6. Consider the two simple closed contours shown in Fig. 111 and obtained by dividing 
into two pieces the annul us formed by the circles C,, and CR in Fig. 110 (Sec. 91 ). The 
legs L and -L of those contours arc directed Ii ne segments along any ray arg::. = l.~1. 

where ;r < Oo < 3;r /2. Also. r,, and )',-, arc the indicated portions of C,,. while r R and 

YR make up CR. 

\' \' I 
I 
I 
I 
I 
I 
I 
I R 

R .\ .\ 

FIGURE Ill 

(ii) Show how it follows from Cauchy's residue theorem that when the branch 

--" 
/1(::.) = -~

::.+I ( 
;r 3;r) I::. I > 0. -
2 

< arg::. < 2 
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at a and 0. respectively. The singularity::.= I/a is. of course. extetior to the circle C 

si nee I a I < 1. 
Inasmuch as 

::.4 + I 
I
. </>(::.) 
(::.) = -

. ::. - (/ 
where </> (::.) = I '. 

(a::. - )::.-

it is easy to sec that 

(I 0) 
a4 +I 

81=</J(a)= , )" 
(a- - I )a-

The residue 82 can be foun<l by writing 

:.4 + I . </>(:.) 
./(::.) = ~ where </>(::.) = ----

(::. - a)(a::. - I) 

and strnightforward difkrcntiation reveals that 

(I I ) 
I a 2 + I 

82 = </> (0) = ) 
a-

Finally. by substituting the residues ( 10) and (I I) into expression (9). v ... e arrive 
at the integration fonnula (8). 

EXERCISES 

l;se residues to establish the following integration formulas: 

(:-r JO 2.iT 

1. .f o 5 + 4 sin (I - 3 

2. ;·~ 
• -.7 

dO 
---, - = J1. .iT. 
I + sin- (I 

J. (·7 
cos

2 
30 c/O = 3.iT . 

./o 5 - 4 cos 20 8 

,f,2.7 t/(J 2.iT 
4. 

I +a cos 0 Ji - a2 (-l<a<l). 

.l;"! c/(J (f.iT 
5. (a > I). 

(a +cos0) 2 ( Ja2 - I):-

l :r (211) ! 
6 . 211 J I . sm f c fl = , , .iT 

.() 2~1 (11!)-
(//=I. 2 .. .. ). 

93. ARG UIVIENT PRINCIPLE 

A function f is said to he meromorphic in a domain D if it is analytic throughout 
D except for poles. Suppose now that f is meromorphic in the domain interior to a 
positively oricntc<l simple dosed contour C and that it is analytic and nonzero on C. 
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EXERCISES 

1. Let C denote the unit circle I: I = 1. described in the positive sense. Use the theorem in 
Sec. 93 to determine the value of ~c arg f(:) when 
(a)/(:)=::: (b) f(:) = 1/:2: (c) /(:.) = (2: - 1)7/:.·'. 

Ans. (a) 4;r: (/J) -4;r: (c) 8;r. 

2. Let f he a function which is analytic inside and on a positively oriented simple closed 
contour C. and suppose that f (:.) is never zero on C. Let the image of C under the 
transformation 11· = f(:.) he the closed contour r shown in Fig. 114. Determine the 
value of ~c arg /(:.) from that figure: and. with the aid of the theorem in Sec. 93. 
determine the number of zeros. counting multiplicities. off interior to C. 

Ans. 6;r: 3. 
1.• 

II 

FIGURE 114 

3. L:sing the notation in Sec. 93. suppose that r does not enclose the origin u· = 0 and that 
there is a ray from that point which does not intersect r. By observing that the absolute 
value of ~c arg f (::) must he less than 2;r \Vhen a point:. makes one cycle around C 
and rec a Iii ng that ~c arg f (::) is an integral multiple of 2;r. point out why the winding 
number of r with respect to the origin 11· = 0 must he zero. 

4. Suppose that a function f is meromorphic in the domain D interior lo a simple closed 
contour Con which f is analytic and nonzero. and let Do denote the domain consisting 
of all points in D except for poles. Point out how it follows from the lemma in Sec. 28 
and Exercise 11. St..'C. 83. that if f (:) is not identically equal to zero in Do. then the 
zeros off in D arc al I of ti ni tc order and that they are ti nitc in number. 

Suggesr imr: :'\ote that if a point : 0 in D is a zero of .f that is not of ti ni te order. then 
there must be a neighborhood of : 0 throughout \Vhich f (:.) is identically equal to zero. 

5. Suppose that a function f is analytic inside and on a positively oriented simple closed 
contour C <md that it has no zeros on C. Show that if f ha" /1 zeros :.1.. (/.: = I. 2 . .... 11) 

inside C. where each :.1.. is of multiplicity 11/f.:.. then 

[ 

:_('(:_) II 

-·-. - d:. = 2;ri L: "'"=·'· 
.(' ./(:.) l..=I 

!Compare with equation (8). Sec. 93. when P = 0 there.I 

6. Determine the number of zeros.counting multiplicities. of the polynomial 

(a) :'' - 5:·1 + :> - 2:: (b) 2:·1 - 2::1 ~ 2:.2 - 2:: + 9: (c) : 7 - 4::' +: - I. 

inside the circle 1:.1 = 1. 

A11s. (a) 4: (h) 0: (c) 3. 
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7. Determine the number of zeros. counting multiplicities. of the polynomial 

(a) ::·' -2::~ +9:: 2 +:: - I: 

inside the ci rclc I:: I = 2. 

All.\. (a) 2: (/>) S. 

(/>) ::5 + 3::·' + :: 2 + 1 

8. Determine the number of roots. counting multiplicities. of the equation 

., _ 5 - I'.)_:! -l.. - -l.. 1 = () -.... ".... ' .... ' 

in the annulus 1 ::: 1::1 < 2. 

A11.L 3. 

9. Show that if c is a complex number such that lei > e. then the equation c~' = e·~ has 11 

roots. counting mu lei pl icities. inside the circle I:: I = 1. 

10. Let two functions f and g he as in the statement of Rouchc's theorem in Sec. 94. and let 
the orientation of the contour C there he positive. Then define the function 

I l /"(::.) + rg'(::.) 
<t>(f) = - . tl-

2;r i. c f(::) + fg(::.) ~ 
<O:::r_:::I) 

and follow these steps below to give another proof of Rouche's theorem. 

(a) Point out why the denominator in the integrand of the integral dcti ni ng <I> (f) is never 
zero on C. This ensures the existence of the integral. 

(/>) Let rand r0 he any two points in the interval 0::: r ::: 1 and show that 

It - to I I l r~' - r ~ I l<l>(f) - <l>(Toll = . ' . ' I 
2.1 . c (f + r g )( f + fog) ' :: . 

Then. after pointing out why 

I 
fg' - f'g I lfg' - f'gl 

(f + Tg)(f +tog) ::: <lfl - l.~1) 2 
at points on C. show that there is a positive constant A. which is independent of T 

and To. such that 

I <l>(f) - <I> Uo) I .::: A It - To I. 

Conclude from this inequality that <l>(f) is continuous on the interval 0 .::: r ::: I. 

(l') By referring to equation (8). Sec. 93. state why the value of the function <I> is. for 
each value oft in the interval 0 .::: t ::: I. an integer representing the numhcr of 
zeros off(::)+ tg(::) inside C. Then conclude from the fact that <I> is continuous. 
as shown in part(/>). that f (::) and/(::) + g(::) have the same number of zeros. 
counting multiplicities. inside C. 

95. INVERSE LAPLACE TRANSFORl\'IS 

Suppose that a function F of the complex variables is analytic throughout the finites 
plane except for a linite number of isolated singularities. Then let L «denote a vc11ical 
line segmelll from s = y - i R to s = y + i R. where the constam y is positive and 
large enough that the singularities of Fall lie lO the left of that scgmelll (Fig. 115). A 


